Abstract

In this study, alkynyl–coumarinyl ethers were developed as inhibitors of human monoamine oxidase B (MAO-B). A series of 31 new, ether-connected coumarin derivatives was synthesized via hydroxycoumarins, whose phenolic group at position 6, 7 or 8 was converted by means of the Mitsunobu reaction. The majority of the final products were produced from primary alcohols with a terminal alkyne group. The inhibitors were optimized with respect to the structure of the alkynyloxy chain and its position at the fused benzene ring as well as the residue at position 3 of the pyran-2H-one part. A hex-5-ynyloxy chain at position 7 was found to be particular advantageous. Among the 7-hex-5-ynyloxy-coumarins, the 3-methoxycarbonyl derivative 36 was characterized as a dual-acting inhibitor with IC50 values of less than 10nM towards MAO-A and MAO-B, and the 3-(4-methoxy)phenyl derivative 44 was shown to combine strong anti-MAO-B potency (IC50=3.0nM) and selectivity for MAO-B over MAO-A (selectivity >3400-fold).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.