Abstract
Highly chemo- and regioselective semihydrogenation of alkynes is significant and challenging for the synthesis of functionalized alkenes. Here, a sequential self-template method is used to synthesize amorphous palladium sulfide nanocapsules (PdSx ANCs), which enables electrocatalytic semihydrogenation of terminal alkynes in H2O with excellent tolerance to easily reducible groups (e.g., C-I/Br/Cl, C═O) and the metal center deactivating skeletons (e.g., quinolyl, carboxyl, and nitrile). Mechanistic studies demonstrate that specific σ-alkynyl adsorption via terminal carbon and negligible alkene adsorption on isolated Pd2+ sites ensure successful synthesis of various alkenes with outstanding time-irrelevant selectivity in a wide potential range. The key hydrogen and carbon radical intermediates are validated by electron paramagnetic resonance and high-resolution mass spectrometry. Gram-scale synthesis of 4-bromostyrene and expedient preparation of deuterated alkene precursors and drugs with D2O show promising applications. Impressively, PdSx ANCs can be applied to the prevailing thermocatalytic semihydrogenation of functionalized alkyne using H2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.