Abstract
Rotational spectra of weakly bound complexes of chlorofluoromethane (CH2ClF) and difluoromethane (CH2F2) with propyne (HCCCH3) have been measured using chirped-pulse and resonant-cavity Fourier-transform microwave spectroscopy, adding to a relatively small body of high resolution spectroscopic data on propyne complexes. Both dimers contain CH/π contacts, as well as secondary contacts between one or both halogen atoms and the methyl group of propyne. A detailed structural determination for CH2F2···propyne has been made by study of the normal, one deuterated and four (13)C substituted isotopologues, with the second lowest energy configuration predicted from ab initio calculations agreeing well with the observed structure. Experimental rotational constants for the most abundant isotopologue of CH2F2···propyne are A00 = 5815.5858(15) MHz, B00 = 1341.1191(5) MHz, C00 = 1099.2040(4) MHz (uncorrected for internal rotation effects), and the dipole moment components, determined by Stark effect measurements, are μa = 1.568(2) D, μb = 0.587(2) D, and μtot = 1.674(3) D. For CH2ClF···propyne, only (35)Cl and (37)Cl isotopologues have been assigned, providing rotational constants and chlorine atom coordinates consistent with the lowest energy structure from a series of ab initio predictions. Rotational constants for the (35)Cl isotopologue are A = 3423.639(7) MHz, B = 1253.7562(20) MHz, and C = 1200.4828(15) MHz and the diagonal and two off diagonal components of the quadrupole coupling tensor have also been determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.