Abstract

Here, we report a surface-enhanced Raman scattering (SERS) nanosensor for real-time ratiometric detection of carbon monoxide (CO) based on a ligand displacement mechanism. This nanoprobe consists of a gold-silver (Au-Ag) alloy nanoparticle core as the highly active SERS substrate, an alkyne/ruthenium(II) (alkyne/Ru(II)) complex immobilized on the surface as the CO-sensing element, and a porous silica shell to improve the stability and biocompatibility of the particle. Displacement of the alkyne ligand by CO results in a decrease of the alkyne vibrations and an increase of the metal carbonyl complex signals, thus allowing the effective ratiometric detection of CO in real-time. The great potential of this assay for CO detection is validated in clean buffer environments, live cells, and tissue slices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call