Abstract

cis-Dioxoruthenium(VI) complexes, [Cn*(CF3CO2)RuVIO2]ClO4 (1) (Cn* = 1,4,7-trimethyl-1,4,7-triazacyclononane) and cis-[(Tet-Me6)RuVIO2](ClO4)2 (2) (Tet-Me6 = N,N,N‘,N‘-tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine), oxidize disubstituted alkynes to 1,2-diketones selectively in good to excellent yields under ambient conditions. The reactions proceed via the formation of dark blue intermediates, which display a characteristic UV−visible absorption band at 550−680 nm. With bis(trimethylsilyl)acetylene as substrate and 1 as the oxidant, the intermediate was isolated and structurally characterized by X-ray crystallography as a [3 + 2] cycloadduct. The kinetics of the cycloaddition of 1 with various substituted trimethylsilylacetylenes has been studied by stopped-flow spectrophotometry. With the exception of bis(trimethylsilyl)acetylene, the second-order rate constants were found to vary over a range of less than an order of magnitude irrespective of a 2.3 eV change of the calculated Ip of the alkynes; therefore, a rate-limiting single electron-transfer mechanism is unlikely. The participation of oxirene (oxene insertion) and metallaoxetene ([2 + 2] cycloaddition) intermediates appears to be implausible based on product analysis. A linear Hammett correlation was established using σ+ and σJJ• parameters for the cycloaddition of 1 with para-substituted aryl trimethylsilylacetylenes, and the rate-limiting vinyl radical intermediate formation is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.