Abstract

Stable ruthenium nanoparticles were prepared by the self-assembly of 1-dodecyne onto the "bare" Ru colloid surface. The formation of a Ru-vinylidene (Ru═C═CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives to form a heterocyclic complex at the metal-ligand interface, as manifested in (1)H and (13)C NMR, photoluminescence, and electrochemical measurements in which a ferrocenyl imine was used as the labeling probe. Notably, the resulting nanoparticles could also undergo olefin metathesis reactions with vinyl-terminated molecules, as exemplified by the functionalization of the nanoparticles with 1-vinylpyrene. In sharp contrast, no reactvity was observed with 1-dodecynide-stabilized ruthenium nanoparticles with either imine or vinyl derivatives, indicating that these (deprotonated) nanoparticles were stabilized instead by the formation of a Ru-C≡ dπ bond at the metal-ligand interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call