Abstract

A wide range of endocrine disrupter chemicals can mimic steroid hormones causing adverse health effects. Nonylphenol (NP) and t-octhylphenol (t-OP) are man-made alkylphenolic environmental contaminants possessing controversial endocrine disruption properties. This study has investigated the effects of NP and t-OP enriched diets on hepatic tissue and biotransformation activities in the liver. To this aim, sea bream juveniles were fed with commercial diet enriched with three different doses of NP (NP1: 5mg/kg bw, NP2: 50mg/kg bw and NP3: 100mg/kg bw) or t-OP (t-OP1: 5mg/kg bw, t-OP2: 50mg/kg bw and t-OP3: 100mg/kg bw) for 21days. A significant increase of the hepatosomatic index was observed in NP1 and t-OP1. Alteration of liver morphology was observed in both NP and t-OP exposed juveniles although the most altered endpoints were observed in t-OP2 with 100% of tissue degeneration. Ethoxyresorufin-O-deethylase activity was significantly inhibited by NP and t-OP (p<0.05), while catalase activity was significantly induced, at both doses. A different pattern of protein expression of different isoforms of both vitellogenin and zona radiata protein was evidenced within the treatments. In addition, a significant increase in the abundance of the stress induced heat shock protein 70 gene in the liver of t-OP2 fish and a significant increase in the abundance of the estrogen induced cathepsin D gene in the liver of NP1 and t-OP2 fish, were observed. Finally, estradiol-17β (E2) and testosterone (T) plasma levels and E2/T showed significantly different patterns in NP and t-OP exposed against control fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.