Abstract

The performance of micro- and nanoelectromechanical systems depends on the surface properties of the substrate material, such as chemical composition, roughness, friction, adhesion, and wear. Substrates of aluminum deposited onto Si (Al/Si) have been chemically reacted with perfluorodecyldimethylchlorosilane (PFMS), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), octylphosphonic acid (OP), and perfluorodecylphosphonic acid (PFDP) and then characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). PFMS/Al self-assembled monolayers (SAMs) were studied by friction force microscopy, a derivative of AFM, to better understand their micro- and nanotribological properties. The adhesion forces for PFMS/Al SAMs were found to be lower when compared to those of bare Al/Si; however, the coefficient of friction for both was comparable. XPS analysis revealed the presence of the corresponding alkyl chain molecules on PFMS/Al, ODP/Al, DP/Al, OP/Al, an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.