Abstract

An efficient and simple method of modification of "inverted" porphyrin is provided by reactions of 5,10,15,20-tetraaryl-2-aza-21-carbaporphyrinatonickel(II) 2 with dihalogenalkanes under basic conditions. The substituents are bound to the internal carbon or external nitrogen of the inverted pyrrole depending on dihalogenalkane and basic catalyst. The monomeric 2- or 21-ethoxymethyl-substituted species are formed in the reaction of 2 with dihalomethanes and sodium ethoxide or ethanol in the presence of K(2)CO(3). A novel, dimeric 21,21'-ethylene-linked derivative 11 is obtained from 2 and ethylene bromide in dichloromethane in the presence of potassium carbonate end ethanol, while application of potassium tert-butoxide promotes formation of N-bromoethyl-substituted monomer 12. Reaction of 2 with propylene bromide in the presence of proton scavenger efficiently leads to the 21-allyl-substituted monomer 14 that is a product of the HBr elimination from a transient 21-bromopropyl-substituted species. The new compounds have been identified and characterized by means of mass spectrometry and optical and NMR spectroscopies. A single-crystal X-ray analysis performed for 12 allows discussion of structural parameters concerning the macrocycle and coordination core. Formation of deprotonated species [2](-), which is proposed as a key intermediate in the alkylation reaction, has been observed spectroscopically. Chirality of the N-substituted derivatives induced by protonation of the internal carbon is observed by NMR at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.