Abstract
ABSTRACT Alkylation reactions of benzene with propylene using heterogeneous catalysts H+-β zeolite, MCM-22, and ZSM-5 were studied for their affinity for cumene production. This work focused on the gas-phase reaction using different crystalline catalysts at several temperatures and amounts of reactants using both batch and continuous fixed-bed reactors. The properties of baseline commercial H+-β catalysts versus versions modified with Ga, La, and Pt were studied. Quantitative analysis of product mixture was performed by gas chromatography. For the batch reactor, β-zeolite produced the highest cumene yield and selectivity of 72% and 92%, respectively, at 225°C. At this temperature, a benzene:propylene dilution of 7:1 molar ratio was the optimum. For the continuous system, cumene production is favored at lower space velocities, higher benzene-to-propylene ratio, and temperatures close to 225°C. Ga modification of the H+-β zeolite significantly enhanced cumene yield in the continuous fixed-bed reactor at 225°C, from 27% of the unmodified β-zeolite to 36% for the Ga-modified one. The life span of modified β-catalysts was studied in the fixed-bed reactor for the first eight hours of reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.