Abstract

The extensive use of fluconazole (FLC) and other azole drugs has caused the emergence and rise of azole-resistant fungi. The fungistatic nature of FLC in combination with toxicity concerns have resulted in an increased demand for new azole antifungal agents. Herein, we report the synthesis and antifungal activity of novel alkylated piperazines and alkylated piperazine-azole hybrids, their time-kill studies, their hemolytic activity against murine erythrocytes, as well as their cytotoxicity against mammalian cells. Many of these molecules exhibited broad-spectrum activity against all tested fungal strains, with excellent minimum inhibitory concentration (MIC) values against non-albicans Candida and Aspergillus strains. The most promising compounds were found to be less hemolytic than the FDA-approved antifungal agent voriconazole (VOR). Finally, we demonstrate that the synthetic alkylated piperazine-azole hybrids do not function by fungal membrane disruption, but instead by disruption of the ergosterol biosynthetic pathway via inhibition of the 14α-demethylase enzyme present in fungal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.