Abstract

Superhydrophobic strain sensors are highly promising for human motion and health monitoring in wet environments. However, the introduction of superhydrophobicity inevitably alters the mechanical and conductive properties of these sensors, affecting sensing performance and limiting behavior monitoring. Here, we developed an alkylated MXene-carbon nanotube/microfiber composite material (AMNCM) that is simultaneously flexible, superhydrophobic, and senses properties. Comprising a commercially available fabric substrate that is coated with a functional network of alkylated MXene/multi-walled carbon nanotubes and epoxy-silicone oligomers, the AMNCM offers high mechanical and chemical robustness, maintaining high conductivity and strain sensing properties. Furthermore, the AMNCM strain sensor achieves a gauge factor of up to 51.68 within a strain range of 80-100%, and exhibits rapid response times (125 ms) and long-term stability under cyclic stretching, while also displaying superior direct/indirect anti-fouling capabilities. These properties position the AMNCM as a promising candidate for next-generation wearable devices designed for advanced environmental interactions and human activity monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.