Abstract

The commercialization of the high energy, lithium, and manganese-rich NCM (LMR-NCM) is impeded by its complex interfacial electrochemical processes, oxygen release, and surface degradation. Here, we introduced t-butyl-dimethylsilyllithium as a single-source precursor for depositing LixSiyOz with an integrated network of siloxane moieties as an artificial cathode/electrolyte interphase (ACEI) which stabilizes LMR-NCM by mitigating oxygen release, electrolyte degradation and preventing fractures. Using solid-state NMR coupled with dynamic nuclear polarization, detailed molecular-level characterization of the ACEI is presented. The proposed CEI enabled improved energy-density at high rates (644 Wh.kg-1, compared to uncoated material with 457 Wh.kg-1 at 4C) with suppressed parasitic reactions and O2 evolution. The efficacy of the CEI is demonstrated in full graphite/LMR-NCM pouch cells with ~ 35% enhanced capacity and >80% capacity retention over 200 cycles. Altogether, these results present the importance of careful selection and design of surface chemistry for stabilizing the electrode/electrolyte interphase in challenging battery chemistries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.