Abstract

Hydroxycinnamic acids (HCAs) are phenolic compounds present in dietary plants, which possess considerable antioxidant activity. In order to increase the lipophilicity of HCAs, with the aim of improving their cellular absorption and expansion of their use in lipophilic media, methyl, ethyl, propyl and butyl esters of caffeic acid and ferulic acid have been synthesized. All caffeate esters had a slightly lower DPPH IC50 (13.5–14.5 μM) and higher ferric reducing antioxidant power (FRAP) values (1490–1588 mM quercetin/mole [mMQ/mole]) compared to caffeic acid (16.6 μM and 1398 mMQ/mole, respectively) in antioxidant assays. In contrast, ferulate esters were less active in DPPH (56.3–74.7 μM) and FRAP assays (193–262 mMQ/mole) compared to ferulic acid (44.6 μM and 324 mMQ/mole, respectively). Redox properties of HCAs were in line with their antioxidant capacities, so that compounds with higher antioxidant activities had lower oxidation potentials. Measurement of partition coefficients disclosed the higher lipophilicity of the esters compared to parent compounds. All esters of caffeic acid significantly inhibited hydrogen peroxide-induced neuronal PC12 cell death assessed by MTT assay at 5 and 25 μM. However, caffeic acid, ferulic acid and ferulate esters were not able to protect the cells. In conclusion, these findings suggest that alkyl esterification of some HCAs augments their antioxidant properties as well as their lipophilicity and as a consequence, improves their cell protective activity against oxidative stress. These compounds could have useful applications in conditions where oxidative stress plays a pathogenic role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call