Abstract

Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state-of-the-art carbon-based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl-chain regulated quantum dots as hole-conductors to reduce charge recombination. By precisely controlling alkyl-chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re-absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call