Abstract

We report the synthesis, structural characterization and magnetic properties of a series of Co(III)/Dy(III) complexes built up from an N-alkyl derivatized amino-alcohol ligand diethanolamine, functionalized with CnH2n+1 alkyl chains (n = 3, 4, 6, 8 and 10). While n = 3 afforded a butterfly {CoIII2DyIII2} core, the other alkyl chains (n = 4, 6, 8) afforded hexanuclear triangle-in-triangle {CoIII3DyIII3} complexes as shown by single-crystal X-ray determinations. Infrared spectroscopy allows us to characterize the C10 derivative complex, which did not crystallize. Magnetic ac susceptibility data collected below 10 K at driving frequencies up to 10 kHz under zero-dc field and up to 1 T provide insight into the SMM behaviour of the studied complexes. The characteristic time of the magnetization dynamics can be understood in terms of the competing Raman, Direct and Orbach-like mechanisms. A relationship between the magnetization dynamics within the family of complexes and the increasing alkyl chain length is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.