Abstract

Fixed nitrogen (N) plays an integral role in global cycling; while most is recycled to refuel primary productivity, a small fraction escapes to be preserved and stabilised in sediments. Despite decades of research, the functionality and reactivity of this sequestered organic N has been poorly understood. This study was undertaken to shed light on this problem by characterising the bulk sediment organic matter using nuclear magnetic resonance (NMR), followed by molecular level analysis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT–ICR–MS). We studied two organic-rich anaerobic sediments, one from a freshwater system and another from a marine paralic basin. Mangrove Lake, Bermuda (marine) and Mud Lake, Florida (freshwater) have been shown in past studies to contain high levels of N-containing organic matter. Our resulting multidimensional NMR data suggests the existence of a new type of amide functionality in both these lake sediments, and we investigated this further using FT–ICR–MS and gas chromatography mass spectrometry (GC–MS). FT–ICR–MS confirmed the existence of homologous series of CHNO containing compounds, whose structures are verified using GC–MS as alkyl amides. Model reactions involving naturally occurring esters and ammonia suggest the source of alkyl amides to be amidation of esters with sedimentary ammonia derived from anaerobic degradation of organic matter. This expands upon previous hypotheses for preservation of amide containing compounds that call upon biological/abiological protection of proteins and peptides or the formation of refractory nitrogenous adducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call