Abstract

In contrast to the well-documented acylating reactivity, the alkylating reactivity of the alkoxycarbonyl group, as signified by its oxocarbenium-like resonance structure, remains almost unexplored. Herein, the first series of Co/Ni dinuclear metalloesters exhibiting the novel oxocarbenium-like alkoxycarbonyl groups were synthesized and characterized. In these deformed alkoxycarbonyl groups, the Ccarbonyl-Oalkoxyl bonds were contracted to 1.177(11)~1.191(9) Å with the elongations of the Ccarbonyl=Ocarbonyl bonds to 1.368(13)~1.441(9) Å. Meanwhile, the O-Calkyl bonds were also elongated to 1.522(11) ~1.607(15) Å, and were by far the longest O-Calkyl bonds reported for alkoxycarbonyl groups. As triggered by the long O-Calkyl distances, the alkylating reactivity of the oxocarbenium-like methoxycarbonyl group towards a series of C/N/O-nucleophiles via the rare BAL2 mechanism at ambient conditions was examined. Furthermore, the homo-etherifications of alcohols mediated by the Co/Ni dinuclear metalloesters were investigated. The yields followed the trend ethanol≫n-propanol≫n-butanol ≈n-pentanol, that closely related to the structure features of the alkoxycarbonyl groups in corresponding metalloesters: while the ethoxycarbonyl group showed the reactive oxocarbenium-like framework, the n-propoxycarbonyl group displayed the dioxocarbenium-like skeleton with a shorter O-Calkyl bond; In comparison, the classical frameworks with unactivated alkyl moieties were observed for n-butoxycarbonyl and n-pentoxycarbonyl groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call