Abstract

[2+2+2] cycloaddition reactions are one of the most elegant routes for the construction of six-membered rings. Here, we report initially the alkenone-enol-alkenone [2+2+2] cycloaddition reaction and introduce the cycloaddition into the system of in situ building complexes, where three novel coordination polymers (CPs) with functional groups, namely {[CdCl2(L1)]} n (1), {[CdCl2(L2)]} n (2), and {[CdCl2(L3)]} n (3), have been obtained. Particularly, the new 1,2,3,4,5-pentasubtituted cyclohexanols ligands L1, L2, and L3 are created from the starting chalcone derivatives via the [2+2+2] cyclotrimerization. Cadmium chloride not only plays the role of constructing CPs but also acts as a catalyst to promote the cycloaddition reaction. In addition, benefiting from numerous exposed carbonyl and hydroxyl function groups, CPs 1-3 are applied to the adsorptive removal of dyes (congo red (CR) and methyl orange (MO)) from aqueous solutions. As a result, 1-3 show excellent dye adsorption capacity. 1 exhibits maximum CR adsorption capacity of 485.4 mg g-1, and 3 has ultrahigh MO uptake capacity of 492.6 mg g-1. Experimental results suggest that the dye removal effect derives from the interactions between dye molecules and the exposed carbonyl and hydroxyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.