Abstract

Hexagonal mesoporous solids were synthesized from solutions containing TS-1 seeds. The products were characterized by XRD, nitrogen and argon physisorption, TEM, TG/DTA of template decomposition (also after extraction of the mesopore template), UV–Vis and IR spectroscopy, and XANES at the Ti K edge. Their catalytic activities were assessed for cyclohexene epoxidation in hydrophilic and hydrophobic environment (CH 3OH/water, with H 2O 2 oxidant, and decane, with tert-butyl hydro-peroxide oxidant, respectively) and for n-hexene epoxidation in hydrophilic environment. The mesopore system was clearly documented by XRD, physisorption measurements, and TEM, whereas evidence for micropores by physisorption proved elusive. However, the micropore template was detected in the solids by TG/DTA even after extraction of the mesopore template, and among the Ti sites, which were confirmed to be tetrahedrally coordinated by UV–Vis and XANES, a clear majority was able to coordinate two water molecules. It was concluded that the pore walls had been built up from nanoparticulate TS-1 precursors resulting in walls of ca. 1.5 nm thickness, which resemble rather the exterior layers of a TS-1 crystallite than its (hydrophobic) interior. In cyclohexene epoxidation, the micro-mesophases were by 1–2 orders of magnitude more active than TS-1 and outperformed also Ti-MCM-41, at similar selectivity in hydrophobic medium. With 1-hexene in hydrophilic medium, however, the micro-mesophases failed completely whereas TS-1 exhibited high activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.