Abstract

In alkene-directed, nickel-catalyzed coupling reactions of 1,3-enynes with aldehydes and epoxides, the conjugated alkene dramatically enhances reactivity and uniformly directs regioselectivity, independent of the nature of the other alkyne substituent (aryl, alkyl (1 degrees , 2 degrees , 3 degrees )) or the degree of alkene substitution (mono-, di-, tri-, and tetrasubstituted). These observations are best explained by a temporary interaction between the alkene and the transition metal center during the regioselectivity-determining step. The highly substituted 1,3-diene products are useful in organic synthesis and, in conjunction with a Rh-catalyzed, site-selective hydrogenation, afford allylic and homoallylic alcohols that previously could not be prepared in high regioselectivity (or at all) with related Ni-catalyzed alkyne coupling reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.