Abstract

Efficient repair by Escherichia coli AlkB dioxygenase of exocyclic DNA adducts 3,N(4)-ethenocytosine, 1,N(6)-ethenoadenine, 3,N(4)-α-hydroxyethanocytosine, and reported here for the first time 3,N(4)-α-hydroxypropanocytosine requires higher Fe(II) concentration than the reference 3-methylcytosine. The pH optimum for the repair follows the order of pK(a) values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center. This interaction is supported by molecular modeling, indicating that 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. An analysis of the pattern of intermolecular interactions that stabilize the location of the ligand points to a role of Asp-135 in recognition of the adduct in its protonated form. Moreover, ab initio calculations also underline the role of substrate protonation in lowering the free energy barrier of the transition state of epoxidation of the etheno adducts studied. The observed time courses of repair of mixtures of stereoisomers of 3,N(4)-α-hydroxyethanocytosine or 3,N(4)-α-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies. Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction.

Highlights

  • AlkB dioxygenase removes alkyl and exocyclic lesions via an oxidative mechanism, restoring the native DNA bases

  • Using HPLC to separate the modified and unmodified oligomers, we found that all the modifications were repaired by E. coli AlkB dioxygenase

  • The appearance of the repaired oligomers was confirmed by mass spectrometry (MS)

Read more

Summary

Introduction

AlkB dioxygenase removes alkyl and exocyclic lesions via an oxidative mechanism, restoring the native DNA bases. The pH optimum for the repair follows the order of pKa values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center This interaction is supported by molecular modeling, indicating that 1,N6-ethenoadenine and 3,N4-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. The observed time courses of repair of mixtures of stereoisomers of 3,N4-␣-hydroxyethanocytosine or 3,N4-␣-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call