Abstract
In spite of the widespread use of alkanols as penetration enhancers, their effect on vesicular formulations remains largely unexplored. These can affect the stability and integrity of the phospholipid bilayers. In this study, we have investigated the interaction of linear (ethanol, butanol, hexanol, octanol) and branched alkanols (t-amylol and t-butanol) with three phospholipids (soya lecithin, SL; soy L-α-phosphatidylcholine, SPC; and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). Thermodynamic and structural aspects of these interactions were studied as a function of the alkanol concentration and chain length. Our interpretations are based on isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) experiments. We observed one-site interactions wherein hydroxyl and acyl groups interacted with the polar and nonpolar regions of the phospholipid, respectively. The stability and structural integrity of bilayers appeared to be dependent upon (a) the hydrocarbon chain length and concentration of alcohols, and (b) the degree of unsaturation in the phospholipid molecule. We found that these interactions triggered a reduction in the enthalpy which was compensated by increased entropy, keeping free energy negative. Drop in enthalpy indicates reversible disordering of the bilayer which enables the diffusion of alcohol without triggering destabilization. Ethanol engaged predominantly with the interface, and it resulted in higher enthalpic changes. Interactions became increasingly unfavorable with longer alcohols - a cutoff point was recorded with hexanol. The overall sequence of membrane disordering capability was recorded as follows: ethanol < butanol < octanol < hexanol. Octanol's larger size restricted its penetration in the bilayer, and hence it caused less enthalpic changes relative to hexanol. This could also be verified from the trends in the area ratio of these vesicles obtained from the DLS data. Branched alkanols displayed a lower binding affinity with the phospholipids relative to their linear counterparts. These data are useful while contemplating the inclusion of short-chain alcohols as penetration enhancers in phospholipid vesicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.