Abstract

Introducing defects and in situ topotactic transformation of the electrocatalysts generating heterostructures of mixed-metal oxides(hydroxides) that are highly active for oxygen evolution reaction (OER) in tandem with metals of low hydrogen adsorption barrier for efficient hydrogen evolution reaction (HER) is urgently demanded for boosting the sluggish OER and HER kinetics in alkaline media. Ascertaining that, metal-organic-framework-derived freestanding, defect-rich, and in situ oxidized Fe-Co-O/Co metal@N-doped carbon (Co@NC) mesoporous nanosheet (mNS) heterostructure on Ni foam (Fe-Co-O/Co@NC-mNS/NF) is developed from the in situ oxidation of micropillar-like heterostructured Fe-Co-O/Co@NC/NF precatalyst. The in situ oxidized Fe-Co-O/Co@NC-mNS/NF exhibits excellent bifunctional properties by demanding only low overpotentials of 257 and 112mV, respectively, for OER and HER at the current density of 10mAcm-2 , with long-term durability, attributed to the existence of oxygen vacancies, higher specific surface area, increased electrochemical active surface area, and in situ generated new metal (oxyhydr)oxide phases. Further, Fe-Co-O/Co@NC-mNS/NF (+/-) electrolyzer requires only a low cell potential of 1.58V to derive a current density of 10mAcm-2 . Thus, the present work opens a new window for boosting the overall alkaline water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.