Abstract

Anion exchange membranes fabricated through a one-step Menshutkin reaction with down-selected multifunctional alkyl halides and multifunctional tertiary amines within an ion-solvating matrix, poly(ethylene-co-vinyl alcohol), yielded alkaline-stable ammonium network polymers. Due to the vast simplicity in fabrication due to the quaternization/Menshutkin reaction between tertiary amine and alkyl bromides, which does not evolve any by-products that require purification, alkaline-stable membranes were fabricated in one step through facile mixing and curing of alkaline-stable ammonium network forming monomers. Prepared membranes showed controllable ion exchange capacity (IEC), conductivity, and mechanical strength by controlling of poly(ethylene-co-vinyl alcohol) amount which is an ion-solvating polymer. The selection of ammonium network chemical structure allowed for flawless retention of IEC and conductivity under conditions of 70°C, 1M KOH of over 300 h. Anion exchange membrane electrolysis membrane electrode assembly tests with optimized membranes showed a greater performance (1.78 A/cm2 at 2.0 V) and more enhanced water electrolyzer durability than that of commercial anion exchange membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.