Abstract

Ribonuclease activity at pH 7.1 ("alkaline" ribonuclease) was determined in homogenates of rat superior cervical ganglion up to 5 days after postganglionic nerve injury under optimal conditions of assay. Measurements were performed in the presence and absence of the sulfhydryl blocking agent, N-ethylmaleimide, to assess the proportion of "alkaline" ribonuclease apparently bound to endogenous inhibitor. Total ribonuclease activity per ganglion was stimulated 1.3 fold by 1 day after injury and remained elevated over the 5 day period. Free ribonuclease activity accounted for about 60% of the observed increase in total activity at day 1, but had returned to control level by day 3. At day 3 the entire 90% increase in total activity was attributable to ribonuclease bound to endogenous inhibitor (i.e. latent activity). These changes are occurring at times after nerve injury when marked alterations in RNA turnover have been observed, implicating "alkaline" ribonucleases in the control of RNA metabolism during nerve regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call