Abstract

Abstract— Comparison between Trp fluorescence yields of membrane‐bound bacteriorhodopsin (BR) and retinylidene‐free bacterioopsin (BO) is consistent with a model in which all eight Trp residues are active fiuorophores in the latter, while the emission of all but two residues in the former is lost by energy transfer to retinal. The visible chromophore of BR is progressively bleached with increasing pH. Up to pH 12 this bleaching is reversed on reneutralization; but above this the change is irreversible with the appearance of a new absorption band characteristic of free retinal. Emission yields for both proteins decrease with increasingly alkaline pH in a manner typical of energy transfer to weakly‐fluorescent tyrosinate. The limiting yields, reached at a pH corresponding to that producing irreversible bleaching of the visible chromophore, agree with an integral value of one remaining active Trp fluorophore in BR and between one and two in BO and show that the bulk of Trp are within the 11 Å Förster energy‐transfer distance of Tyr accessible to OH−. Current models of the native protein structure of BR arrange the polypeptide chain primarily in a bundle of seven helical segments with axes perpendicular to the lipid bilayer plane and with buried polar residues, including Trp and Tyr, located at intrahelical surfaces. An interpretation of the observed accessibility of buried Tyr to OH− is that an aqueous region exists within the protein structure. Moreover, this putative aqueous region must be close to the retinylidene chromophore and thus may be associated with the light‐driven ion transport system. The results are also compatible with energy transfer to internal Tyr residues which are connected via a chain of phenolate hydrogen bonds to a surface Tyr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.