Abstract

Alkaline phosphatase (ALP) is an important enzyme but using ALP-instructed self-assembly of gadolinium nanofibers for enhanced T2-weighted magnetic resonance imaging (MRI) of tumor has not been reported. In this work, we rationally designed a hydrogelator Nap-FFFYp-EDA-DOTA(Gd) (1P) which, under the catalysis of ALP, was able to self-assemble into gadolinium nanofibers to form hydrogel Gel I for enhanced T2-weighted MR imaging of ALP activity in vitro and in tumor. T2 phantom MR imaging indicated that the transverse relaxivity (r2) value of Gel I was 33.9% higher than that of 1P and both of them were 1 order of magnitude higher than that of Gd-DTPA. In vivo T2-weighted MR imaging showed that, at 9.4 T, ALP-overexpressing HeLa tumors of 1P-injected mice showed obviously enhanced T2 contrast. We anticipate that, by replacing ALP with other enzymes, our approach could be applied for MR diagnosis of other diseases in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.