Abstract

Alkaline phosphatase (ALP) is a significant biomarker that indicates osteoblast activity and skeletal growth. Efficient ALP detection methods are essential in drug development and clinical diagnosis. In this work, we developed an in-situ synthesized three-dimensional graphene networks (3DGNs)-based electrochemical sensor to determine ALP activity. The sensor employs an ALP enzymatic conversion of non-electroactive substrate to electroactive product and presents the ALP activity as an electrochemical signal. With 3DGNs as the catalyst and signal amplifier, a sample consumption of 5 μL and an incubation time of 2 min are enough for the sensor to detect a wide ALP activity range from 10 to 10,000 U/L, with a limit of detection of 5.70 U/L. This facile fabricated sensor provides a quick response, cost-effective and non-destructive approach for monitoring living adherent osteoblast cell activity and holds promise for ALP quantification in other biological systems and clinical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.