Abstract

Filtrate reducer is a drilling fluid additive that can effectively control the filtration loss of drilling fluid to ensure the safe and efficient exploitation of oilfields. It is the most widely used treatment agent in oilfields. Due to its moderate conditions and controllable procedure, alkaline hydrolysis of high-purity waste polyacrylonitrile has been utilized for decades to produce filtrate reducer on a large scale in oilfields. However, the issues of long hydrolysis time, high viscosity of semi-finished products, high drying cost, and tail gas pollution have constrained the development of the industry. In this study, low-purity waste acrylic fiber was first separated and purified using high-temperature hydroplastization, and the hydrolyzed product was obtained using alkaline hydrolysis with the micro-water method, which was called MW-HPAN. The hydrolysis reaction was characterized using X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis, and the elemental analysis showed a hydrolysis degree of 73.21%. The experimental results showed that after aging at 180 °C for 16 h, the filtration volume of the freshwater base slurry with 0.30% dosage and 4% brine base slurry with 1.20% dosage was 12.7 mL and 18.5 mL, respectively. The microstructure and particle size analysis of the drilling fluid gel system showed that MW-HPAN could prevent the agglomeration of clay and maintain a reasonable particle size distribution even under the combined deteriorating effect of high temperature and inorganic cations, thus forming a dense filter cake and achieving a low filtrate volume of the drilling fluid gel system. Compared with similar commercially available products, MW-HPAN has better resistance to temperature and salt in drilling fluid gel systems, and the novel preparation method is promising to be extended to practical production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.