Abstract

Restriction fragments of phage lambda and phi X174 deoxyribonucleic acid (DNA) were photoreacted with 4,5',8-trimethylpsoralen to various extents, and the amount of covalent cross-linking was determined by electron microscopy of the DNA under totally denaturing conditions. The DNA was then analyzed by electrophoresis in alkaline agarose gels. A single cross-link in a DNA molecule produced a large decrease in its electrophoretic mobility. With DNA fragments 0.3--4 kilobase pairs in size, the apparent Mr (molecular weight) of the cross-linked DNA was 2.0 +/- 0.1 times and Mr of the unreacted, single-stranded DNA. A single cross-link in a larger DNA molecule resulted in an even greater increase in apparent Mr. Further cross-linking produced a decrease in the apparent Mr of the DNA, reaching a plateau at a value of 1.4 +/- 0.1 times the Mr of the unreacted, single-stranded DNA over a large range of fragment sizes (0.6--10 kilobase pairs). The apparent Mr of the cross-linked DNA was weakly dependent on the percentage of agarose in the gel. Although highly sensitive to interstrand cross-links the electrophoretic mobilities appeared to be unaffected by low levels of monoadducts (trimethylpsoralen covalently bound to one strand of the DNA). The DNA bandwidths increased by as much as 4-fold at low extents of cross-linking, presumably due to heterogeneity in the locations of the cross-links in the DNA molecules. The bands became sharp again at high levels of reaction. These observations from the basis of a new assay for interstrand DNA cross-links that is both more sensitive and more convenient than previous methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.