Abstract

In this paper, Ba-doped SnO2 (SnO2:Ba), Mg-doped SnO2 (SnO2:Mg) and Ce-doped SnO2 (SnO2:Ce) nanostructured thin films were prepared on the glass substrate via a simple and low-cost nebulizer spray pyrolysis method. The crystal structure and morphology of all the samples were investigated by X-ray diffraction (XRD) and field-emission-scanning electron microscopy (FE-SEM), respectively. XRD results suggest that all the samples are polycrystalline with the tetragonal rutile structure. FE-SEM analysis exhibits a uniform surface morphology with homogenous distribution of grains. The transmittance measurement suggests that SnO2:Ba sample exhibits high transparency above 90% in the visible region. We find that doping causes an increase in the band gap, this behavior is explained by the Burstein–Moss effect. Two emission bands in the ultraviolet and visible regions are observed in the photoluminescence spectra. Hall effect measurement reveals that all the samples are degenerate and exhibit n-type semiconducting nature with carrier concentration in the order of 1018 cm−3. Ba doping induces the lowest resistivity of 0.047 Ω·cm associated with an increase in carrier concentration of 8.38 × 1018 cm−3 and mobility of 15.87 cm2 V−1 s−1. In contrast, the incorporation of Mg and Ce in SnO2 reduces the mobility and conductivity, which may be associated with the grain boundary scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call