Abstract

A series of high alumina (>20 mass %) borosilicate glasses have been made and characterized based on the assumption that the primary modifier cation field strength plays a significant role in mediating glass structure of nuclear waste glasses. Any crystallization upon quenching or after heat treatment at 950 °C for 24 hours was identified and quantified by X-ray diffraction. Particular note was take of any aluminosilicates formed, such as those in the nepheline group (MAlSiO4 where M=K, Na, Li), as these remove multiple glass-formers from the network upon crystallization. The relative roles of potassium, sodium, lithium, calcium, and magnesium on glass structure and crystallization in high alumina glasses were explored using Raman and infrared vibrational spectroscopy. Strong evidence was found for the importance of 4 membered rings in glasses with 10 mol % alkaline earths (Ca, Mg).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.