Abstract

This work reports and describes a novel alkali-activated metakaolin as a potential binder material for the granulation of zeolites, which are widely used as CO2 adsorbents. The alkali-activated binders are zeolite-like materials, resulting in good material compatibility with zeolite-based adsorbents. A major problem during the granulation of zeolites is that their adsorption capacities decrease by about 15–20%, because typical binder materials (for example bentonite or kaolin clay) are inactive towards CO2 adsorption. A possible pathway to solve this problem is to introduce a novel binder that is also able to sorb CO2. In such a case, a binder plays a dual role, acting both as a binding material and as a sorbent. However, it is important that, alongside the adsorptive properties, a novel binder material must fulfil mechanical and morphological requirements. Thus, in this work, physical and mechanical properties of this novel binder for zeolite granulation for CO2 adsorption are studied. Alkali-activated metakaolin was found to be efficient and competitive as a binder material, when mechanical and physical properties were concerned. The compressive strengths of most of the obtained binders reported in this work are above the compressive strength threshold of 10 MPa. The future work on this novel binder will be conducted, which includes granulation-related details and the CO2 adsorptive properties of the novel binder material. Metakaolin was used as a precursor for alkali-activated binders. Binders were synthesized using varying molarity of a NaOH solution and at varying curing conditions. The final products were characterized using density measurements, compressive strength tests, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM).

Highlights

  • Low-calcium alkali-activated binders (AABs) or geopolymers are well-known zeolite-like materials, which have been studied as pH buffers and adsorbents for heavy metals [1,2,3,4]

  • Zeolites are suitable for CO2 adsorption, so they have been widely studied for biogas upgrading

  • In a future study on sorptive properties, M6-Room condition (RC) should be addressed, since it fulfilled the mechanical requirement of a compressive strength of

Read more

Summary

Introduction

Low-calcium alkali-activated binders (AABs) or geopolymers are well-known zeolite-like materials, which have been studied as pH buffers and adsorbents for heavy metals [1,2,3,4]. It is proven that different types of zeolites in certain amounts (such as zeolite Na-A, hydrosodalite, zeolite X, faujasite, and analcime) can be formed as secondary alkali-activation products in the structure of an AAB [5,6,7,8]. Zeolites in the structure of an AAB might improve contaminant sorption effectiveness, i.e., in removal of heavy metals from wastewater [9,10], as well as removal of NH4 + [11], Ca2+ [10], and F− [12]. Zeolites are suitable for CO2 adsorption, so they have been widely studied for biogas upgrading. During the biogas upgrading process, the main gases CO2 and CH4 are separated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call