Abstract
This study presents the results of an experimental campaign on the use of municipal solid waste incinerator bottom ash (MIBA) and fly ash (FA) as precursors for the production of alkali-activated materials. MIBA was subjected to a pre-treatment stage in response to two issues: high metallic aluminum content, which reacts in a high pH solution, releasing hydrogen; and low amorphous content of silica-, aluminum- and calcium-bearing phases, which translates into a limited formation of reaction products. The proposed pre-treatment stage oxidizes most of the metallic aluminum fraction and compensates for the low reactivity of the material via the formation of additional reactants. Different combinations of MIBA and FA were tried—mass-based ratios of 0/100, 25/75, 50/50, 75/25, and 100/0 for MIBA/FA. Two mix designs of the alkaline activator with sodium hydroxide and sodium silicate were evaluated by varying the Na2O/binder and SiO2/Na2O ratios. These mortars were tested in the fresh and hardened state. The results showed that the pre-treatment stage was effective at stabilizing the dimensional variation of MIBA. Despite the lower reactivity of MIBA, mortars with 50/50 of MIBA/FA presented a maximum 28-day compressive strength of 25.2 MPa, higher than the 5.7 MPa of mortars made with MIBA only.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.