Abstract

To understand the effect of alkali treatment on sorption behaviour of cellulose II fibres, samples were continuously pre-treated using NaOH over a concentration range of 0.0–7.15moldm−3, with varying tension; treated substrates were dyed with hydrolysed C. I. Reactive Red 120. Greatest adsorption of dye occurs for cellulose II fibres treated with 2.53 and 3.33moldm−3 aqueous NaOH solution. Correlation to sorption isotherms is most closely associated with a Langmuir type isotherm, but correlation to the Freundlich isotherm is still significant, indicating sorption via a combination of Langmuir and Freundlich isotherms. Adsorption energy (ΔG0) increases with increasing NaOH concentration to a maxima between 2.53 and 3.33moldm−3 NaOH and then decreases with further increase in NaOH concentration. Equilibrium dye sorption shows good correlation with water sorption as assessed by the reactive structural fraction (RSF) theory. Theoretical monolayer capacity (q0) increases with increasing NaOH concentration to a maxima at 3.33moldm−3 NaOH and then decreases with further increase in NaOH concentration; q0 is significantly in excess of the number of available specific sites (–COO−Na+) in the substrate, indicating non-site-specific interactions, more typical of a Freundlich isotherm. Pores in the fibre significantly affected by alkali treatment (<20Å diameter) and accessibility of dye (14Å) sorption into those pores account the differences observed herein; maximum qe, q0 and ΔG0 are observed for cellulose II fibre treated with 2.53–3.33moldm−3 NaOH as this concentration range affects the greatest increase in accessible pore volume in the fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.