Abstract

GH11 endo-xylanases, due to their inherent structural and biochemical properties, are the key to efficient bioconversion of lignocellulosic biomass into value-added products. A GH11 endo-xylanase (XynB) from Bacillus subtilis strain CAM 21 was cloned, over-expressed and purified (Mw∼24 kDa) using Ni-NTA affinity chromatography. XynB showed optimum activity at pH 7.0 and 50°C and was stable (>88%) in a broad range of pH (4–11). The apparent Km, Kcat and Kcat/Km of XynB were 2.9 mg/ml, 1961.2/sec, and 675.62 ml/mg/sec, respectively using birchwood xylan as substrate. XynB was a classical endo-xylanase as it hydrolyzed birchwood xylan to xylo-oligosaccharides and not xylose. Kinetic stability of XynB at 45–53°C was between 43-182 min. Secondary structure analysis of XynB using far-UV CD spectroscopy revealed presence of 51.85% β strands and 2.64% α helix and was consistent with the homology modeling studies. XynB hydrolyzed the xylan extracted from agro-industrial wastes and fruit/vegetable peels by releasing up to 670 mg/g of reducing sugars. The xylan extracted from weeds (Ageratum conyzoides, Achyranthes aspera and Tridax procumbens) had characteristic signatures of hemicelluloses and after XynB hydrolysis showed cracks, peeling and release of up to 135.2 mg/g reducing sugars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.