Abstract

Basalt fibers were dip-coated in zirconium-n-propoxide, unstabilized or stabilized by chelation with ethyl acetoacetate. The thermal transformations of the hydrated zirconia coatings formed were investigated by dynamic x-ray diffraction and differential thermal analysis. The changes in the surface chemical compositions of coated and uncoated fibers, following alkali immersion extending to 90 days, were characterized by EDXA and IR spectral analysis. Fiber strengths were also measured after immersion in 0.1 M NaOH for different durations. It was found that the transition of the amorphous zirconia coating to the tetragonal crystalline phase is shifted to higher temperatures by chelation of the zirconium alkoxide. Alkali corrosion of the uncoated basalt fibers results in dissolution of the oxides of Si, Al, and Ca, and the formation of unsoluble hydroxides of Fe, Mg, and Ti from the chemical constituents of basalt. These reactions are suppressed by the protective zirconia coating on basalt fibers formed by the unstabilized zirconium alkoxide. However, the coating formed from zirconium propoxide stabilized by ethyl acetoacetate does not form an effective barrier against alkali attack since it is easily detached from the fiber surface during alkali immersion. The tensile strength of uncoated basalt fibers is drastically reduced by alkali attack. But the strength of zirconia-coated basalt fibers is maintained even after 90 days of alkali immersion. The vastly improved alkaline durability of the coated fibers shows the potential of zirconia-coated basalt fibers for cement reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.