Abstract

Chemical looping oxidative dehydrogenation (CL-ODH) represents a redox approach to convert ethane into ethylene under an autothermal scheme. Instead of using gaseous oxygen, CL-ODH utilizes lattice oxygen in transition metal oxides, which acts as an oxygen carrier or redox catalyst, to facilitate the ODH reaction. The oxygen-deprived redox catalyst is subsequently regenerated with air and releases heat. The current study investigated alkali metal (Li, Na, and/or K)-promoted LaxSr2–xFeO4−δ (LaSrFe) as redox catalysts for CL-ODH of ethane. While unpromoted LaSrFe exhibited poor ethylene selectivity, addition of Na or K promoter achieved up to 61% ethane conversion and 68% ethylene selectivity at 700 °C. The promotional effect of K on LaSrFe was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (LEIS), transmission electron microscopy (TEM), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and 18O2...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call