Abstract

In this study, we report the results of electrochemical impedance spectroscopy data modelling of various battery half-cells with different alkali metal (Li, Na, K) salts. Test results of electrochemical half-cells were evaluated for the D-glucose derived hard carbon negative electrode in 1.0 M LiPF6 + EC:DMC (1:1 volume ratio), 1.0 M NaPF6 + EC:DMC (1:1), 1.0 M NaClO4 + PC, 0.8 M KPF6 + EC:DEC (1:1) and 0.8 M KPF6 + EC:DMC (1:1) solutions at 0.5 mV s−1 potential scan rate measured within the potential region from 0.05 V to 1.2 V (vs Me/Me+) (where Me is Li, Na or K). Modelling of electrochemical impedance spectroscopy data was employed to characterize alkali metal insertion processes in/on D-glucose derived hard carbon anode. Detailed analysis of impedance data shows that Newman equivalent circuit modified with a constant phase element can be applied for calculation of impedance spectra and fitting of calculated data to experimental ones, using non-linear least square root fitting method. Equivalent circuit fit parameters depend strongly on electrolyte composition. Very slow processes have been observed for KPF6 + EC:DEC based half-cell. Comparatively quick metal-cation reduction and accumulation processes have been observed in NaClO4 + PC and LiPF6 +EC:DMC based half-cell anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.