Abstract

It is demonstrated that the doping of alkali metal atoms on fullerene, C60, remarkably enhances the molecular hydrogen adsorption capacity of fullerenes, which is higher than that of conventionally known other fullerene complexes. This effect is observed to be more pronounced for sodium than lithium atom. The formation of stable complex forms of a sodium-doped fullerene molecule, Na8C60, and the corresponding hydrogenated species, [Na(H2)6]8C60, with 48 hydrogen molecules has been demonstrated to lead to a hydrogen adsorption density of approximately 9.5 wt %. One of the main factors favoring the interactions involved is attributed to the pronounced charge transfer from the sodium atom to the C60 molecule and electrostatic interaction between the ion and the dihydrogen. The suitability of these complexes for developing fullerene-based hydrogen storage materials is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.