Abstract

Mechanisms for the Csp-H silylation between prop-2-yn-1-ylcyclohexane and triethylsilane, catalyzed by MOH/MH (M = Na or K), were investigated at the M06-L-D3/ma-def2-TZVP level. The SMD model was applied to simulate the solvent effect of 1,2-dimethoxyethane (DME). Computational results suggested that the Csp-H activation of prop-2-yn-1-ylcyclohexane could be achieved by MOH to generate R-CC-M compounds, which continued to react with triethylsilane to yield the final product: (3-cyclohexylprop-1-yn-1-yl) triethylsilane. Moreover, analysis of the Gibbs free energy surface of the three reactions suggested that a path with the participation of LiOH had the highest energy barrier, which was consistent with experimental results showing that only a small amount of product had been formed. The obtained KH could interact readily with the H2O molecule with a much lower energy barrier (0.6 kcal mol-1) than that using the path with prop-2-yn-1-ylcyclohexane. Furthermore, compared to MOH, MH could catalyze the reaction with lower energy barriers, and the reactions became exothermic, thereby benefiting the reaction. Finally, the mechanism for obtaining the byproduct (prop-1-yn-1-ylcyclohexane) was posited: it had a higher energy barrier than the path to yield the main product. Frontier orbital, noncovalent interactions (NCI), Fukui function and dual descriptor analyses could be used to analyze the structure and reveal the reaction substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.