Abstract

Helium (He) nanodroplets provide a cold and virtually unperturbing environment for the study of weakly bound molecules and van der Waals aggregates. High resolution microwave spectroscopy and the detection of electron spin transitions in doped He droplets have recently become possible. Measurements of hyperfine-resolved electron spin resonance in potassium (39K) and rubidium (85Rb) atoms on the surface of He droplets show small line shifts relative to the bare atoms. These shifts were recorded for all 2I + 1 components (I is the nuclear spin) of a transition at high accuracy for He droplets ranging in size from 1000 to 15,000 He atoms. Evaluation of the spectra yields the influence of the He environment on the electron spin density at the alkali-metal nucleus. A semi-empirical model is presented that shows good qualitative agreement with the measured droplet size dependent increase of Fermi contact interaction at the nuclei of dopant K and Rb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.