Abstract

Despite the long list of planar tetracoordinate atoms, hydrogen is elusive. This is especially due to the inherent ability of hydrogen to form multicenter bonds with other centers. Herein, we introduce the first planar tetracoordinate hydrogen atom (ptH) in the global minimum geometry of a C2v symmetric Li4H4- cluster. Bonding analysis indicates that the central hydrogen atom is stabilized by multicenter bonding with four surrounding Li atoms. Natural charge analysis reveals that the central hydrogen is acting like a hydride, which is strongly attracted by the positively charged surrounding lithium centers. The ptH structure is stabilized by strong electrostatic attraction as well as extensive multicenter bonding. Aromaticity has no role to play here. The cluster is dynamically stable and is expected to be detected in the gas phase. Introduction of a heavier alkali metal such as sodium makes the planar C2v cluster a local minimum with slightly higher energy than the linear global minimum geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.