Abstract

Inorganic metal halide perovskite CsPbX3 (X = I, Br, and Cl) nanocrystals (NCs) are rapidly developed due to their excellent photophysical properties and potential applications in lighting, lasers, and scintillators. However, the materials for growing perovskite NCs are insoluble or hydrolyzed in most green solvents, limiting their further development. Based on rational chemical analysis, an alkali-metal-assisted green-solvent synthesis method for in situ growth of CsPbBr3 NCs within SAPO-34 zeolite with bright luminescence is developed. Water is the only solvent used in the whole process. Surprisingly, by the synergistic effect of the channel structure of SAPO-34 and alkali-metal ions crystallization regulation, the CsPbBr3 NCs embedded in SAPO-34 assisted by Na+ emit bright blue light under ultraviolet illumination, with a 30nm blue shift comparing to the CsPbBr3 NCs assisted by K+. Moreover, CsPbBr3 NCs can also be grown in mesoporous SiO2 SBA-15 and zeolites including ZSM-5, AlPO-5, and SOD, indicating that the method is universal for in situ growth of luminescent perovskite NCs in porous materials. This alkali-metal-assisted green-solvent synthesis provides a new strategy for developing high-quantum-yield, tunable-emission, and stable perovskite luminescent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call