Abstract

The use of hexamethylphosphoric triamide (HMPA) as a stabilizing ligand allowed successful isolation of a series of structurally characterizable alkali metal and calcium ketyl complexes. Reaction of lithium and sodium with one equivalent of fluorenone and reaction of sodium with one equivalent of benzophenone in THF, followed by addition of two equivalents of HMPA, yielded the corresponding ketyl complexes 1, 2, and 11, respectively, as microketyl-bridged dimers. If one equivalent of HMPA was used in the reaction of sodium with fluorenone, a further aggregated complex, the mu3-ketyl-bridged tetramer 3, was isolated, whereas analogous reaction of benzophenone with sodium afforded the trimeric ketyl complex 13, rather than a simple benzophenone analogue of 3. In the reaction of potassium with fluorenone, the use of two equivalents of HMPA gave the tetramer 4, rather than a dimeric complex analogous to 1 or 2. Compared to the tetrameric sodium complex 3, there is an extra HMPA ligand that bridges two of the four K atoms in 4. When 0.5 equiv of HMPA was used in the above reaction, complex 5, a THF-bridged analogue of 4, was isolated. In the absence of HMPA, the reaction of sodium with an excess of fluorenone yielded the tetrameric ketyl complex 6, in which two of the four Na atoms are each terminally coordinated by a fluorenone ligand, and the other two Na atoms are coordinated by a THF ligand. Two bridging THF ligands are also observed in 6. Reaction of 1,2-bis(biphenyl-2,2'-diyl)ethane-1,2-diol (7) with two equivalents of LiN(SiMe3)2 or NaN(SiMe3)2 in the presence of four equivalents of HMPA easily afforded 1 or 2, respectively, via C-C bond cleavage of a 1,2-diolate intermediate. The reaction of calcium with two equivalents of fluorenone or benzophenone in the presence of HMPA gave the corresponding complexes that bear two independent ketyl ligands per metal ion. In the presence of 3 or four equivalents of HMPA, the fluorenone ketyl complex was isolated in a six-coordinate octahedral form (10), while the benzophenone ketyl complex was obtained as a five-coordinate trigonal bipyramid (13). The radical carbon atoms in both benzophenone ketyl and fluorenone ketyl complexes are still in an sp2-hybrid state. However, in contrast with the planar configuration of the whole fluorenone ketyl unit, the radical carbon atom in a benzophenone ketyl species is not coplanar with any of the phenyl groups; this explains why benzophenone ketyl is more reactive than fluorenone ketyl. Hydrolysis of 2 or 11 with 2N HCI yielded the corresponding pinacol-coupling product, while treatment of 2 or 11 with 2-propanol, followed by hydrolysis, gave the pairs fluorenone and fluorenol or benzophenone and benzhydrol, respectively. A possible mechanism for these reactions is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.