Abstract

Pure Al2O3–2SiO2 powders were prepared by sol–gel and coprecipitation methods, and their alkali-activation reactivities were compared. The alkali-activation reactivity of the powder prepared by the sol–gel method was higher than that of the powder prepared by the coprecipitation method. The powders were investigated by 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) to understand the relationship between their structure and alkali-activation reactivity. The 27Al MAS NMR data showed that the five-coordinate Al content of the powder prepared by the sol–gel method was higher than that of the powder prepared by coprecipitation. The higher content of five-coordinate Al corresponded to higher alkali-activation reactivity. The 29Si MAS NMR data showed that for the powder prepared by the sol–gel method, silicon was replaced by aluminum at secondary coordination sites of the central Si atoms during calcination. However, for the powder prepared by single-batch coprecipitation, the main change was from a low degree of polycondensation to a high degree of polycondensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.