Abstract
An alkali-activated slag cement produced with a blend of sodium carbonate/sodium silicate activator was characterised. This binder hardened within 12 h and achieved a compressive strength of 20 MPa after 24 h of curing under ambient conditions, which is associated with the formation of an aluminium substituted calcium silicate hydrate as the main reaction product. Carbonates including pirssonite, vaterite, aragonite and calcite were identified along with the zeolites hydroxysodalite and analcime at early times of reaction. The partial substitution of sodium carbonate by sodium silicate reduces the concentration of carbonate ions in the pore solution, increasing the alkalinity of the system compared with a solely carbonate-activated paste, accelerating the kinetics of reaction and supplying additional silicate species to react with the calcium dissolving from the slag as the reaction proceeds. These results demonstrate that this blend of activators can be used effectively for the production of high-strength alkali-activated slag cements, with a microstructure comparable to what has been identified in aged sodium-carbonate-activated slag cements but without the extended setting time reaction usually identified when using this salt as an alkali activator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.