Abstract

In the mammalian ovary, the proteolysis of the extracellular matrix is dynamically regulated by plasminogen activator and plasminogen activator inhibitor (PAI), and it is a critical event that influences various physiological and pathological processes. Activin A is a member of the transforming growth factor-β superfamily and is expressed at a high level in human luteal cells that play an essential role in the regulation of the luteal function. At present, it is not known whether activin A can regulate the expression and production of PAI in human granulosa lutein (hGL) cells. The present study aimed to examine the effects of activin A on the expression and production of intraovarian PAI-1 and the underlying molecular mechanisms. Using primary and immortalized hGL cells as the cell model, we demonstrated that activin A upregulated the expression of PAI-1 and increased the production of PAI-1 in an autocrine/paracrine manner. Additionally, using a dual inhibition approach (molecular inhibitors and siRNA-mediated knockdown), we showed that this biological function is mediated by the ALK4-mediated SMAD3-SMAD4-dependent signaling pathway. Our findings suggest that activin A may be involved in the regulation of luteal function via the induction of PAI-1 expression and an increase in PAI-1 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call