Abstract
Purpose We investigated whether the direct renin inhibitor aliskiren can affect metabolism in cardiomyocytes from rat, mouse and human sources. Methods and results At 10–50 μmol/L, aliskiren significantly increased medium-chain-fatty-acid uptake in primary-cultured neonatal-rat and HL-1 adult-mouse-derived cardiomyocytes (BODIPY-induced fluorescence intensity). The fatty-acid transporter CD-36 was correspondingly translocated to, but the glucose transporter Glut-4 away from, the sarcoplasmic reticulum/plasma membrane, in primary-cultured neonatal-rat (CD-36, Glut-4) and adult-human (CD-36) cardiomyocytes (confocal immunocytochemistry). Immunoblotting showed that aliskiren induced phosphorylation of ERK1/2 in cardiomyocytes from all three sources; responses were dose- and time-dependent, unaffected by renin treatment, and did not cause alterations in expression of (P)R or Igf2/M6P receptors. Microarray analysis of the complete genome of aliskiren-treated neonatal-rat cardiomyocytes, with RT-qPCR and immunoblot confirmation assays in rat and human primary cardiomyocytes, showed that aliskiren up-regulated mRNA and increased protein expression of several enzymes important in lipid and glucose metabolism and in cholesterol biosynthesis. Cardiomyocyte cell-cycle and viability were unaffected by aliskiren. Conclusions Aliskiren can induce changes in fatty-acid and glucose uptake and expression of key enzymes of lipid and cholesterol metabolism, which are not associated with increased expression of (P)R or Igf2/M6P receptors, in cultured cardiomyocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.